Hello! 👋
I study how children with motor disorders learn to speak and communicate.
Bayesian stats let me handle repeated-measures, time-series data from heterogeneous populations.
My current project looks at speech intelligibility (y) changes with age (x). The figure shows a spaghetti plot of model fits and observed data for one child, showing a nice fit to the data. The right shows three histograms that describe when the lines cross various intelligibility thresholds.
To get my cool model to work, I needed diagnostics…
Try to predict race time from race distance and hill height.
stan_glm(time_min ~ distance_km, data = races, ...)
races
#> # A tibble: 90 x 4
#>    race                   distance_km climb_km time_min
#>    <chr>                        <dbl>    <dbl>    <dbl>
#>  1 Alva Games Hill Race           2.5    0.385     18.6
#>  2 Aonach Mor Uphill Race         4      0.61      22.2
#>  3 Arrochar Alps                 25      2.4      188. 
#>  4 Beinn Lora Hill Race           5      0.34      26.8
#>  5 Ben Aigan Hill Race            6.4    0.326     28.5
#>  6 Ben Lomond Hill Race          12.6    0.98      62.3
#>  7 Ben Nevis Race                14      1.36      85.6
#>  8 Ben Rinnes Hill Race          22.4    1.57     117  
#>  9 Ben Sheann Hill Race           4      0.426     22.9
#> 10 Bennachie Hill Race           12.8    0.55      55.2
#> # ... with 80 more rowsClassical regression: line of best fit (maximum likelihood)
Bayesian regression: all plausible lines given data and data-generating process (posterior distribution)
mcmc_intervals_data(m1_draws) %>% 
  glimpse()
#> Observations: 3
#> Variables: 9
#> $ parameter   <fct> (Intercept), distance_km, sigma
#> $ outer_width <dbl> 0.9, 0.9, 0.9
#> $ inner_width <dbl> 0.5, 0.5, 0.5
#> $ point_est   <chr> "median", "median", "median"
#> $ ll          <dbl> -11.001341, 5.503966, 11.515591
#> $ l           <dbl> -8.614441, 5.688012, 12.376087
#> $ m           <dbl> -6.994535, 5.805850, 13.016453
#> $ h           <dbl> -5.393244, 5.921104, 13.701015
#> $ hh          <dbl> -3.084268, 6.105477, 14.862735Figure showing the abstract of the new Rhat paper. https://arxiv.org/abs/1903.08008
Plus dozens more plots